1. Which one of the following indicates the correct order of variation in atomic size?
A) $\mathrm{B}>\mathrm{Be}>\mathrm{C}>\mathrm{N}$
B) $\mathrm{Be}>\mathrm{C}>\mathrm{N}>$ B
C) $\mathrm{Be}>\mathrm{B}>\mathrm{C}>\mathrm{N}$
D) $\mathrm{N}>\mathrm{C}>\mathrm{B}>\mathrm{Be}$
2. Which of the following elements is metalloid?
A) C
B) $\quad \mathrm{P}$
C) Pb
D) As
3. The second ionization energy of $\mathrm{C}, \mathrm{N}, \mathrm{O}$ and F is of the order
A) C $<$ N $<$ O $<$ F
B) C $<$ N $<$ F $<$ O
C) $\mathrm{O}<\mathrm{N}<$ C $<$ F
D) C $<$ F $<$ O $<$ N
4. The binding energy per nucleon of ${ }^{16} \mathrm{O}$ and ${ }^{17} \mathrm{O}$ are 7.98 MeV and 7.76 MeV respectively then the energy required in MeV to remove a neutron from ${ }^{17} \mathrm{O}$ is
A) 3.58
B) $\quad 7.76$
C) $\quad 4.24$
D) $\quad 7.98$
5. The reciprocal of decay constant λ is called
A) Average life
B) Half life
C) Natural life
D) Root mean life
6. The highest oxidation state among transition elements is
A) $\quad+7$ by Mn
B) +8 by $\mathrm{Os} \& \mathrm{Ru}$
C) +9 by Rh
D) $\quad+6$ by Cr
7. Which among the following is the most acidic aqua ions
A) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
D) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
8. The strong yellow colour of Ce^{+4} ions is due to
A) d-d transition
B) f-f transition
C) Metal to ligand charge transfer
D) Ligand to metal charge transfer
9. The most effective method of separation and purification of lanthanides is by
A) Ion exchange column
B) Fractional crystallization
C) Solvent extraction
D) Complex formation
10. +2 oxidation states among the lanthanides are shown by
A) $\mathrm{Ce} \& \mathrm{Pr}$
B) $\quad \mathrm{Pm} \& \mathrm{Nd}$
C) $\quad \mathrm{Eu} \& \mathrm{Yb}$
D) $\quad \mathrm{Gd} \& \mathrm{Lu}$
11. Which of the following shows coordination isomerism?
A) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right] \&\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
B) $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Br}_{2} \&\left[\mathrm{PtBr}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$
C) $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2} \&\left[\mathrm{Co}(\mathrm{ONO})\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$
D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4} \&\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO} 4 \mathrm{Br}\right.$
12. Which of the following statements is/are true?
I. $\quad\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is tetrahedral and diamagnetic
II. $\quad\left[\mathrm{NiCl}_{4}\right]^{2-}$ is square planar and paramagnetic
III. $\quad\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ is octahedral and diamagnetic
IV. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is octahedral and diamagnetic
A) I, II \& III
B) I \& III only
C) II \& IV only
D) II, III \& IV
13. The IUPAC name of the complex $\left[\mathrm{CrCl}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{NO}_{3}$ is
A) Chlorohydroxodiaquadiamminechromium(III)nitrate
B) Diaquadiamminechlorohydroxochromium(III) nitrate
C) Diaquadiamminehydroxochlorochromium(III) nitrate
D) Diamminediaquachlorohydroxochromium(III) nitrate
14. Jahn-Teller distortion is not shown by octahedral complexes with electronic configuration
A) d^{9}
B) $\quad d^{7}$ low spin
C) $\quad d^{4}$ high spin
D) d^{7} high spin
15. The ground term symbol for V^{2+} ion is
A) $\quad{ }^{4} F_{9} / 2$
B) $\quad{ }^{4} F_{3 / 2}$
C) $\quad{ }^{4} G_{5} / 2$
D) $\quad{ }^{2} G_{5} / 2$
16. The possible number of J values for $\mathrm{a}^{3} \mathrm{G}$ term are
A) 2
B) 3
C) 4
D) 9
17. The magnetic moment of a complex is $5.9 \mu_{\mathrm{B}}$. Which among the following is the complex?
A) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B) $\quad\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
C) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
D) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
18. The strength of π - acceptor ligands increases in the order
A) $\mathrm{CN}^{-}<\mathrm{N}_{2}<\mathrm{CO}<\mathrm{NO}^{+}$
B) $\mathrm{CN}^{-}<\mathrm{N}_{2}<\mathrm{NO}^{+}<\mathrm{CO}$
C) $\mathrm{CN}^{-}<\mathrm{CO}<\mathrm{N}_{2}<\mathrm{NO}^{+}$
D) $\quad \mathrm{N}_{2}<\mathrm{CN}^{-}<\mathrm{CO}<\mathrm{NO}^{+}$
19. Which among the following complexes obey the 18 electron rule?
(i) $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$, (ii) $\mathrm{Cr}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$, (iii) $\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}$, (iv) $\mathrm{V}(\mathrm{CO})_{6}$
A) i, ii, iv only
B) i, iii \& iv only
C) i\& iii only
D) ii \& iv only
20. The structure of $\mathrm{Fe}(\mathrm{CO})_{5}$ is
A) Square pyramidal
B) Trigonal bipyramidal
C) Pentagonal pyramid
D) Pentagonal
21. In oxyhemoglobin, iron is in
A) High spin Fe(III)
B) Low spin Fe (III)
C) High spin Fe(II)
D) Low spin Fe(II)
22. Hydroxylation of hydrocarbons by plants and animals are done by the biomolecule
A) Vitamin B12
B) Ferridoxin
C) Cytochrome P 450
D) Haemerythrin
23. In aluminothermite process, aluminium acts as
A) Oxidising agent
B) Reducing agent
C) Catalyst
D) Flux
24. Which among the following metals are purified by VanArkel tetraiodide decomposition method?
$\mathrm{Ti}, \mathrm{Zr}, \mathrm{Mn}, \mathrm{Th}$
A) Ti only
B) $\quad \mathrm{Zr}$ only
C) Ti \& Mn only
D) $\mathrm{Ti}, \mathrm{Zr} \& \mathrm{Th}$ only
25. Steel with very hard surface is prepared by
A) Nitriding process
B) Cementation process
C) Annealing process
D) Tempering process
26. The organometallic used in the hydroformylation of alkenes is
A) $\quad \mathrm{Ti}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{Cl}_{3}$
B) $\quad \mathrm{CoH}(\mathrm{CO})_{4}$
C) $\quad \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$
D) $\quad\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{3}\right]$
27. Which of the following is not a green solvent?
A) $\mathrm{H}_{2} \mathrm{O}$
B) $\quad \mathrm{CCl}_{4}$
C) Ionic liquids
D) Liquid CO_{2}
28. KCl crystallizes in the NaCl type structure. If the radius of K^{+}ions is 138 pm and that of Cl^{-}ion is 182 pm , what is the unit cell dimension of KCl crystal?
A) 389 pm
B) 236 pm
C) $\quad 320 \mathrm{pm}$
D) $\quad 640 \mathrm{pm}$
29. A compound of A and B crystallizes in a cubic lattice in which atoms of A occupy the corners of the cube and B atoms occupy the centres of each of the cube faces. What is the formula of this compound?
A) $\quad \mathrm{A}_{3} \mathrm{~B}$
B) $\quad \mathrm{AB}_{2}$
C) $\quad \mathrm{AB}_{3}$
D) AB
30. An ionic compound crystallizing in cubic system showed powder diffraction pattern in which the lines are indexed respectively to $111,200,220,311,222$, 400,331 , etc planes. The lattice is
A) Primitive cubic
B) BCC
C) FCC
D) End centered
31. Due to the presence of Schottky defects, the density of the crystal \qquad
A) Increases slightly
B) Increases appreciably
C) Decreases slightly
D) Remains the same
32. Match the following

Column I	Column II
(a) Fluorite	(i) $\mathrm{MgAl}_{2} \mathrm{O}_{4}$
(b) Antifluorite	(ii) BaTiO_{3}
(c) Spinel	(iii) CaF_{2}
(d) Perovskite	(iv) $\mathrm{Na}_{2} \mathrm{~S}$

A) a-i, b-ii, c-iv, d- iii
B) a-iii, b-iv, c-i, d- ii
C) a-ii, b-iii, c-iv, d- i
D) a-iii, b-iv, c-ii, d- i
33. Which of the following types of crystals are usually piezoelectric?
A) Perovskite
B) Rutile
C) Rock salt
D) Zinc blende
34. In the following reaction $3 \mathrm{Mg}+\mathrm{N}_{2} \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$
if 9 moles of magnesium and 6 moles of nitrogen are taken in a reaction vessel, then after the reaction
A) 9 moles of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ will be formed
B) 15 moles of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ will be formed
C) 6 moles of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ will be formed
D) 3 moles of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ will be formed
35. The number of $\mathrm{H}_{3} \mathrm{O}^{+}$ions present in 10 mL of 0.1 N HCl solution is
A) $\quad 6.022 \times 10^{23}$
B) $\quad 6.022 \times 10^{22}$
C) $\quad 6.022 \times 10^{21}$
D) $\quad 6.022 \times 10^{20}$
36. The percentage by volume of $\mathrm{C}_{3} \mathrm{H}_{8}$ in a gaseous mixture of $\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{CH}_{4}$ and CO is 30. When 100 mL of the mixture is burnt in excess of O_{2}, the volume of CO_{2} produced is (All volumes measured under the same conditions of temperature and pressure)
A) $\quad 160 \mathrm{~mL}$
B) $\quad 170 \mathrm{~mL}$
C) $\quad 180 \mathrm{~mL}$
D) $\quad 100 \mathrm{~mL}$
37. Which of the following is a redox indicator?
A) Methyl orange
B) Bromothymol blue
C) N-phenylanthranilic acid
D) Xylenol orange
38. Nickel is gravimetrically estimated as a complex with
A) Oxine
B) Dimethylglyoxime
C) EDTA
D) Salycylaldemine
39. Which among the following is/are true?
A) Instrumental errors arise because no instrument is perfect and so it will introduce errors into our measurements
B) Method errors arise because no chemical procedure or reaction is perfect
C) Personal errors are very subtle errors that we personally introduce into the experiment.
D) All of the above
40. An analyst performed experiments and got the following results for the presence of lead in a water sample as $3.0,2.9$ and 3.1 ppm . The mean, median and standard deviation are respectively
A) $3.0,3.0$ and 0.1 ppm
B) $\quad 3.0,2.9$ and 3.1 ppm
C) $\quad 2.9,3.0$ and 0.01 ppm
D) None of the above
41. The increasing order of stability among the following carbocations is

(I)

(II)

(III)

(IV)
A) I $<$ II $<$ III $<$ IV
B) I $<$ II $<$ IV $<$ III
C) I $<$ III $<$ II $<$ IV
D) IV $<$ I $<$ II $<$ III
42. The reactive intermediate formed in the following reaction is

$\xrightarrow{\mathrm{Br}_{2} / \mathrm{KOH}}$
A) Carbene
C) Benzyne
B) Nitrene

D) Carbocation
43. Which among the following is/are antiaromatic?
i)

ii)

iii)

iv)

A) i \& ii only
B) ii \& iv only
D) i, ii \& iv only
44. The major product formed in the following reaction is

A)

B)

C)

45. The major product formed in the following reaction is

46. Match the following reductions with suitable reagents

Name of reduction	Reagents
(a) Clemmensen reduction	(i) $\mathrm{NH}_{2} \mathrm{NH}_{2} / \mathrm{KOH}$
(b) Birch reduction	(ii) $\mathrm{Zn}(\mathrm{Hg}) / \mathrm{HCl}$
(c) Wolff- Kishner reduction	(iii) Aluminium isopropoxide
(d) MPV reduction	(iv) $\mathrm{Li}^{2} \mathrm{NH}_{3}$

A) a-i, b-iii, c-iv, d- ii
B) a-ii, b-iv, c-iii, d- i
C) a-ii, b-iv, c-i, d- iii
D) a-ii, b-iii, c-i, d- iv
47. Alkylation of a ketone at the α - position can be done effectively by
A) Stork enamine reaction
B) Friedel- Crafts alkylation
C) Ullmann reaction
D) Reformatsky reaction
48. The rearrangement occuring in the following reaction is of the type

A) Beckmann
B) Wagner- Meerwin
C) Claisen
D) Curtius
49. The major product obtained in the following reaction is

50. The major product obtained in the following reaction is

A)

B)

C)

D)

51. The following are chiral due to

(I)

(II)

(III)
A) I-axial, II- helical, III-Plane
B) I-axial, II-Plane, III-centre
C) I-plane, II-axial, III-centre
D) I-axial, II-helical, III-centre
52. The most stable conformation of the following compound is
A) All equatorial

B) $\quad \mathrm{t}-\mathrm{Bu} \& \mathrm{OH}$ axial, methyl equatorial
C) t-Bu equatorial, methyl \& OH axial
D) t-Bu \& Methyl equatorial, OH axial
53. The most stable conformation of optically active butane-2,3-diol is
A)

B)

C)

D)

54. The absolute configuration of D-erythrose,

A) $\quad 2 \mathrm{R}, 3 \mathrm{~S}$
B) $\quad 2 R, 3 R$
C) $\quad 2 \mathrm{~S}, 3 \mathrm{R}$
D) $\quad 2 \mathrm{~S}, 3 \mathrm{~S}$
55. The most efficient method of resolution of racemic mixture is
A) Mechanical separation
B) Biochemical
C) Chemical method
D) Chiral column chromatography
56. Which of the following transition represents phosphorescence?
A) $\mathrm{S}_{\mathrm{o}} \longrightarrow \mathrm{S}_{1}$
B) $\mathrm{S}_{2} \longrightarrow \mathrm{~S}_{1}$
C) $\mathrm{T}_{1} \longrightarrow \mathrm{~S}_{0}$
D) $\mathrm{T}_{1} \longrightarrow \mathrm{~T}_{0}$
57. The major product X in the following photochemical reaction is

A)

C)

B)

D)

58. Which of the following thermal sigmatropic rearrangement is impossible?
A) $[1,3] \mathrm{H}$
B) $[1,5] \mathrm{H}$
C) $\quad[1,7] \mathrm{H}$
D)
59. Predict the major product X in the following reaction?

A)

B)

C)

D)

60. Which of the following cycloadditions occur thermally?
A)

B)

C)

D)

61. Which of the following compounds has maximum value for $\lambda_{\max }$?
A)

B)

C)

D)

62. The acetylenic C - H stretching vibration will occur in the region
A) $3300 \mathrm{~cm}^{-1}$
B) $2950 \mathrm{~cm}^{-1}$
C) $3080 \mathrm{~cm}^{-1}$
D) $2700 \mathrm{~cm}^{-1}$
63. The number of signals in ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$
A) 5
B) 2
C) 4
D) 3
64. The compound $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ showed strong absorption band near $1710 \mathrm{~cm}^{-1}$. The off resonance decoupled ${ }^{13} \mathrm{C}$ NMR spectrum had $\delta 205(\mathrm{~s}), 38(\mathrm{~d}), 22(\mathrm{q}), 17(\mathrm{q})$. The structure of the compound is
A)

B)

C)

D)

65. The mass spectrum of an alkyl halide showed M and $M+2$ peak intensities in the ratio $1: 1$. The halogen present in the compound is
A) Fluorine
B) Chlorine
C) Bromine
D) Iodine
66. The number of isoprene units in a diterpenoid is
A) 2
B) 3
C) 4
D) 5
67. Which of the following statements is not correct in the case of papavarine?
A) It is an isoquinoline based alkaloid.
B) It is an optically active alkaloid.
C) It contains four methoxy groups.
D) It on oxidation with hot permanganate gives papaverinic acid.
68. Lipids which regulate physiological responses such as inflammation, blood pressure and pain
A) Prostaglandins
B) Phospholipids
C) Sphingolipids
D) Triacylglycerols
69. Which of the following are the four bases present in RNA?
A) Adenine, guanine, cytosine, thymine.
B) Adenine, guanine, uracil, thymine.
C) Adenine, guanine, cytosine, uracil.
D) Guanine, cytosine, thymine, uracil
70. Aminoacid mixtures are separated by electrophoresis on the basis of their respective isoelectric points(pI). The pI of lysine is

A) 5.56
B) $\quad 6.48$
C) $\quad 7.31$
D) $\quad 9.87$
71. The hyperconjugative effect of the group R in $\mathrm{R}-\mathrm{CH}=\mathrm{CH}_{2}$, where R is $\mathrm{CH}_{3}-, \mathrm{CH}_{3} \mathrm{CH}_{2}$-, or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$ - follow the order
A) $\mathrm{CH}_{3^{-}}>\mathrm{CH}_{3} \mathrm{CH}_{2^{-}}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-$
B) $(\mathrm{CH} 3) 2 \mathrm{CH}->\mathrm{CH} 3 \mathrm{CH} 2->\mathrm{CH} 3-$
C) $\mathrm{CH} 3->(\mathrm{CH} 3) 2 \mathrm{CH}->\mathrm{CH} 3 \mathrm{CH} 2-$
D) $(\mathrm{CH} 3) 2 \mathrm{CH}->\mathrm{CH} 3->\mathrm{CH} 3 \mathrm{CH} 2-$
72. Which of the following carbohydrate has β-glycosidic linkage?
A) Cellulose
B) α-amylose
C) Amylopectin
D) Glycogen
73. Match the following

Column I	Column II
(a) Acrylonitrile	(i) Lucite
(b) Chloroprene	(ii) Orlon
(c) Methylmethacrylate	(iii) Nylon 6
(d) Caprolactam	(iv) Neoprene

A) a-ii, b-i, c-iv, d-iii
B) $\quad \mathrm{a}-\mathrm{iii}, \mathrm{b}-\mathrm{i}, \mathrm{c}-\mathrm{iv}, \mathrm{d}$-ii
C) a-ii, b-iv, c-i, d-iii
D) a-i, b-iv, c-iii, d-ii
74. Super glue is a polymer of
A) Styrene
B) Methyl α-cyanoacrylate
C) Vinyl acetate
D) Isobutene
75. Natural rubber is
A) cis -poly(2-methyl-1,3-butadiene)
B) trans- poly(2-methyl-1,3-butadiene)
C) alternate cis and trans -poly(2-methyl-1,3-butadiene)
D) cis- poly(1,3-butadiene)
76. Which of the following is a step growth polymer?
A) Polystyrene
B) Teflon
C) Nylon 6-6
D) PVC
77. Melmac is a copolymer of
A) toluene-2,6-diisothiocyanate \& ethylene glycol
B) teriphtalic acid \& 1,4-diaminobenzene
C) adipic acid \& 1,6-hexanediamine
D) melamine\& formaldehyde
78. A mixture of benzoic acid, benzamide and ethylbenzoate is subjected to chromatographic separation by TLC. The distances moved by the three components is of the order
A) Benzoic acid < Ethylbenzoate $<$ Benzamide
B) Benzamide $<$ Benzoic acid $<$ Ethylbenzoate
C) Benzamide $<$ Ethylbenzoate $<$ Benzoic acid
D) Ethylbenzoate $<$ Benzamide $<$ Benzoic acid
79. Which among the following is/are used as carrier gas in GC?
$\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{He}, \mathrm{Ar}$
A) H_{2} only
B) $\mathrm{He} \& \mathrm{Ar}$ only
C) $\quad \mathrm{N}_{2}$ only
D) All the four
80. Which of the following is expected to give a blood- red colouration during Lassignes test of nitrogen?
A) Aniline
B) Urea
C) Thiourea
D) O-toluidine
81. Which of the following properties of light cannot be explained by quantum theory?
A) Blackbody radiation
B) Photoelectric effect
C) Diffraction
D) Atomic spectra
82. The solubility product of a sparingly soluble salt AX_{2} is 3.2×10^{-11}. Its solubility in moles/litre is
A) $\quad 2 \times 10^{-4}$
B) 8×10^{-4}
C) 4×10^{-4}
D) $\quad 5.6 \times 10^{-4}$
83. The number of planar nodes present in 5f-orbitals is
A) One
B) Two
C) Three
D) Four
84. According to variation principle, the energy E evaluated using a trial wave function will be related to the ground state energy E_{0} as
A) $E \leq E_{0}$
B) $\quad E \geq E_{0}$
C) $E=E_{0}$
D) $E \neq E_{0}$
85. The screening constant for the 2 p electron in the nitrogen atom is
A) 3.1
B) $\quad 2.8$
C) 2.6
D) 3.5
86. Bond order in CO is
A) 2
B) 2.5
C) $\quad 1.5$
D) 3
87. Among the following orbitals of diatomic molecule, the bonding MO is
A) $\quad 1 \sigma_{\mathrm{u}}$
B) $\quad 2 \sigma_{\mathrm{u}}$
C) $\quad 1 \pi_{u}$
D) $\quad 1 \pi g$
88. The hybridisation involved in the molecules PF_{5} and BrF_{5} respectively are
A) $\quad \mathrm{dsp}^{3} \& \mathrm{~d}^{2} \mathrm{sp}^{3}$
B) $\quad \mathrm{sp}^{3} \mathrm{~d} \& \mathrm{sp}^{3} \mathrm{~d}^{2}$
C) $d^{2} \mathrm{sp}^{3} \& d^{2} \mathrm{sp}^{3}$
D) $\quad s p^{3} d^{2} \& s p^{3} d^{2}$
89. Which of the following molecules are in $\mathrm{C}_{2 \mathrm{~V}}$ point group?
i. NH_{3}
ii. pyridine
iii. $\mathrm{H}_{2} \mathrm{O}$ iv. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
A) ii only
B) i \& ii only
C) iii only
D) ii,iii \& iv only
90. The $\mathrm{C}_{4 \mathrm{v}}$ point group has eight elements grouped into five classes. The order of the point group and the number of irreducible representations present in this group are respectively
A) $5 \& 8$
B) $8 \& 5$
C) $8 \& 3$
D) $8 \& \infty$
91. Identify the Mulliken symbol for the following irreducible representation.

E	C_{3}	C_{2}	i	S_{6}	$\mathrm{\sigma}_{\mathrm{d}}$
1	1	-1	-1	-1	1

A) $\quad A_{2 u}$
B) $\quad A_{1 u}$
C) $\quad A_{1 g}$
D) $\quad B_{2 u}$
92. Which of the following molecules are microwave active?
i. CO_{2}
ii. $\mathrm{H}_{2} \mathrm{O}$
iii. CO
iv. N_{2}
A) i \& ii only
B) i, ii \& iii only
C) ii \& iii only
D) i \& iv only
93. All the three branches (P,Q \& R) are seen in the vibration- rotational spectra of the molecule
A) CO
B) DCl
C) HCl
D) NO
94. Mossabauer spectrum of sodium nitroprusside consists of
A) singlet
B) doublet
C) triplet
D) multiplet
95. Which among the following nuclei are NMR active
i. ${ }^{14} \mathrm{~N}$,
ii. ${ }^{16} \mathrm{O}$,
iii. ${ }^{19} \mathrm{~F}, \quad$ iv. ${ }^{14} \mathrm{C}$,
v. ${ }^{31} \mathrm{P}$
A) i, ii, iii \& v only
B) i, iii \& v only
C) ii \& iii only
D) All of these
96. The esr spectrum of a radical with a single magnetic nucleus is split into 6 lines. What is the spin of the nucleus?
A) 5
B) $3 / 2$
C) $5 / 2$
D) 3
97. Helium atom is twice heavier than a hydrogen molecule. At $25^{\circ} \mathrm{C}$ the average K.E. of helium atom is
A) Half that of hydrogen
B) Four times that of hydrogen
C) Twice that of hydrogen
D) Same as that of hydrogen
98. The ratio between the most probable velocity of H_{2} at 50 K and that of O_{2} at 800 K
A) 1
B) 2
C) 4
D) $1 / 4$
99. The ratio of the rates of diffusion of two gases P \& Q is $4: 1$, the ratio of their molecular masses is
A) $1: 16$
B) $1: 4$
C) $1: 2$
D) $1: 8$
100. The type of liquid crystal used in LCD screens is
A) Cholestic
B) Nematic
C) Smectic
D) Lyotropic
101. An incorrect statement about work is
A) It is a path dependent function
B) An ideal gas expanding into vacuum does maximum work
C) Expansion work against external pressure $\left(\mathrm{P}_{\text {ext }}\right)$ is $\mathrm{P}_{\text {ext }} \mathrm{dv}$, where dv is infinitesimal change in volume
D) Expansion work in an isothermal reversible process for n moles of an ideal gas is, $-n R \operatorname{Tln} \frac{V_{1}}{V_{2}}\left(\mathrm{~V}_{1}\right.$ and V_{2} are the initial \&final volumes)
102. Which colligative property is most suitable for the determination of molecular mass of a protein?
A) Osmotic pressure
B) Elevation in boiling point
C) Depression in freezing point
D) Relative lowering of vapour pressure
103. The Joule - Thomson coefficient $\mu_{J T}$ is defined by
A) $\left(\frac{\partial T}{\partial P}\right)_{S}$
B) $\left(\frac{\partial P}{\partial T}\right)_{S}$
C) $\left(\frac{\partial P}{\partial T}\right)_{H}$
D) $\left(\frac{\partial T}{\partial P}\right)_{H}$
104. Camphor is often used as a solvent in molecular weight determination because
A) It is a solvent for many organic substances
B) It is readily available
C) It is volatile
D) It has high cryoscopic constant
105. If ΔG^{0} is zero for a reaction, then
A) $\quad \mathrm{NH}=0$
B) $\quad \mathrm{AS}=0$
C) $\quad \mathrm{K}_{\text {eqlm }}=1$
D) $\quad \mathrm{K}_{\text {eqlm }}=0$
106. In a system containing $\mathrm{CaCO}_{3(\mathrm{~S})}, \mathrm{CaO}_{(\mathrm{s})} \& \mathrm{CO}_{2(\mathrm{~g})}$ the number of components, number of phases and degrees of freedom are respectively

	C	P	F
A)	2	2	2
B)	2	3	1
C)	3	3	2
D)	1	2	1

107. In how many ways can two particles be distributed in five states of an energy level if the particle follows Bose- Einstein statistics?
A) 30
B) 20
C) 15
D) 10
108. In a second order reaction,
$2 \mathrm{~A} \longrightarrow$ Product
if the concentration of A is doubled, the half- life of the reaction will be
A) Halved
B) Unchanged
C) Doubled
D) Quadrupled
109. For a chemical reaction which one of the following plots will be linear (k - rate constant)
A) kvs T
B) $\quad \log \mathrm{k} v s \mathrm{~T}$
C) $\quad \log \mathrm{k} v s \log \mathrm{~T}$
D) $\quad \log \mathrm{k} v s 1 / \mathrm{T}$
110. The expression for the rate constant $\left(k_{r}\right)$ according to the absolute reaction rate theory is (K^{*} is the equilibrium constant for the activation)
A) $\quad k_{r}=\frac{h}{k T} K^{*}$
B) $\quad k_{r}=\frac{k T}{h} K^{*}$
C) $\quad k_{r}=\frac{k T}{h} K^{*} e^{-E^{*} / R T}$
D) $\quad k_{r}=\frac{k T}{h} K^{*} e^{-\Delta H^{*} / R T}$
111. For the reaction, $\mathrm{A} \rightarrow$ Products, the plot of [A] vs time is a straight line. The order of the reaction is
A) Zero
B) One
C) Two
D) Three
112. Which of the following statements is not correct about chemisorption?
A) It involves chemical bonding between adsorbent and adsorbate
B) It involves high heat of adsorption
C) It involves multi-layer adsorption
D) It is irreversible in nature
113. According to Langmuir adsorption isotherm
A) Plot of $\frac{p}{x / m}$ versus $1 / p$ is linear
B) Plot of $\frac{p}{x / m}$ versus p is linear
C) Plot of $\frac{1}{x / m}$ versus $1 / p$ is linear
D) Plot of $\frac{1}{x / m}$ versus p is linear
114. Brownian movement is due to
A) Temperature fluctuation in the dispersion medium
B) Electrostatic interaction between dispersed phase and dispersion medium
C) Unbalanced impact of molecules of dispersion medium on dispersed phase
D) Convection current
115. Which among the following statements is not correct?
A) All solid catalysts follow heterogeneous catalytisis.
B) Heterogeneous catalysts function by providing an alternate pathway for the reaction in which the energy of activation is low.
C) Efficiency of a solid catalyst depends on surface area.
D) A catalyst may be deactivated by heating to a high temperature.
116. The relationship between mean ionic activity coefficient for $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and its ionic activity coefficients is given by
A) $\gamma_{ \pm}=\gamma_{+}^{3} \gamma_{-}^{2}$
B) $\gamma_{ \pm}=\gamma_{+}^{2} \gamma_{-}^{3}$
C) $\quad \gamma_{ \pm}^{5}=\gamma_{+}^{3} \gamma_{-}^{2}$
D) $\gamma_{ \pm}^{5}=\gamma_{+}^{2} \gamma_{-}^{3}$
117. If Λ_{c} of 0.1 M NH 44 OH is $11.5 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, its degree of dissociation is $\left(\lambda_{N H_{4}^{+}}^{0}=73.4 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right.$ and $\left.\lambda_{O H^{-}}^{0}=197.6 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)$
A) 0.0608
B) 0.0424
C) 0.848
D) $\quad 0.0212$
118. What will be the standard Gibbs free energy change for the cell reaction of the cell $\mathrm{Pt} / \mathrm{Li}(\mathrm{s}) / \mathrm{Li}^{+} / / \mathrm{F}^{-} / \mathrm{F}_{2}(\mathrm{~g}) / \mathrm{Pt}$?
Given $E_{F_{2} / F^{-}}^{0}=2.87 \mathrm{~V}$ and $E_{L i^{+} / L i}^{0}=-3.05 \mathrm{~V}$
A) $\quad-1142 \mathrm{~kJ}$
B) $\quad+1142 \mathrm{~kJ}$
C) $\quad-347 \mathrm{~kJ}$
D) $\quad+347 \mathrm{~kJ}$
119. The standard potential at 298 K for the following half reactions are given against each:

$$
\begin{array}{rll}
\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e} & \rightleftharpoons \mathrm{Zn}(\mathrm{~s}) & -0.762 \mathrm{~V} \\
\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e} & \rightleftharpoons \mathrm{Cr}(\mathrm{~s}) & -0.740 \mathrm{~V} \\
\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e} \rightleftharpoons \mathrm{Al}(\mathrm{~s}) & -1.66 \mathrm{~V} \\
\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e} & \rightleftharpoons \mathrm{Au}(\mathrm{~s}) & +1.40 \mathrm{~V}
\end{array}
$$

Which is the most powerful reducing agent?
A) Zn
B) Au
C) Cr
D) Al
120. Which among the following reference electrodes, whose emf is independent of pH , and so not suitable for measuring the pH of a solution?
A) Glass electrode
B) Calomal electrode
C) Hydrogen electrode
D) Quinhydron electrode

